
Sync Protocol Specs

• Write protocol specifications of three sync protocols:
• PSync FullSync

• PSync PartialSync

• syncps (Pollere Inc)

• Precise and unambiguous:
• ABNF for message formats

• W3C-style algorithm listing for procedures

• Spec should match existing reference implementations

• Benefit: enable interoperable implementations of these protocols

• Technology: Markdown, ASCII art, Scalable Vector Graphics (SVG)



RTCDataChannel Transport for Browsers

UDP: consumer-side TCP-like congestion control works well

nginx producer

browser

TCP over TCP: 😟

NFD

WebRTC DataChannel:
• bidirectional communication
• arbitrary data (not audio/video)
• low latency
• UDP based

RTCDataChannel gateway:
• establish RTCPeerConnection

• signaling using HTTPS or NDN 
broadcast Interests

• RTCDataChannel ↔ plain UDP proxy

Benefit: better congestion 
control in web applications

Technology stack:
• browser: NDNts
• gateway: (any of)

• JavaScript: wrtc
• Go: Pion
• C++: WebRTC Native



NDN Video using NDNts

What's wrong with iViSA?

• Huge JS bundle: 287KiB
• PageSpeed score: 65

• Frequent producer downtime:
• 86% availability in past 30 days

• Outdated dependency:
• NFD 0.6.6 (18 months ago)

• To use YouTube fallback,
• every page linking to the player 

must be modified.

https://ivoosh.ndn.today

• Smaller JS bundle: 131KiB
• PageSpeed score: 96

• Producer: partial mirror using 
NDNts embedded repo
• Lean and stable; no NFD needed

• Hackathon tasks:
• Add video encoding scripts
• Embed YouTube fallback on the 

player page
• Explore deploying with ndn-

python-repo

https://ivoosh.ndn.today/


Passive Name Visualizer

• Read packets from pcap (GoPacket library)
• Live capture or read from file

• Parse packets (NDNgo library)

• Visualize traffic (d3.js or similar)
• Traffic volume over time

• Name hierarchy within selected time period

pcap

NFD, NDN-DPDK, Mini-NDN, ndnSIM, etc

time



NDNph – NDN-Lite Bridge

• Allow NDN-Lite application logic to run 
on platforms supported by NDNph
• especially, ESP32

• Approach:
• NDNph is a ndn_face_intf_t on NDN-Lite side

• NDN-Lite is a transport on NDNph side

• Other tasks:
• Mbed TLS security backend in NDN-Lite

• Mbed is the default security library in NDNph, 
and has hardware acceleration on ESP32

• Technology stack:
• C and C++11

• Linux

• (no ESP32 necessary)


