
YaNFD: Yet another NDN 
Forwarder

Eric Newberry, Xinyu Ma
UCLA

10th NDN Hackathon
October 18, 2020



Overview
● Examine what was done well in and what lessons could be learned from:

○ NFD (evaluation done before hackathon)
○ NDN-DPDK
○ ndn-lite

● Use this information to create “lessons learned”
● Make a number of important design decisions for YaNFD

2



Lessons Learned from NFD
● NFD started with a quite idealistic design, e.g., high modularity, but has 

deviated from these principles over time for practical reasons
○ E.g., interdependencies between modules have only increased over time

● Modularity can be useful, but too much can lead to heavyweight and code that 
is difficult to understand

○ No link services except GenericLinkService -- and features can already be enabled/disabled

● Need to make specific choice whether faces are interfaces (to a broadcast 
link) or links (to a single remote host)

○ Whether the underlying transport is or not is irrelevant, this concerns how presented to FW

● More than a single forwarding thread is required for an effective forwarder
● Need to keep up with research advances to improve forwarding speed

○ E.g., use character tries in data structures
3



Lessons Learned from NDN-DPDK
● Data structures for tables

○ Make an abstract interface to support different implementations
○ PIT Sharding
○ Multithreading locks

● Support different strategies
○ Choices: classes, shared-library, eBPF, WASM embedding, standalone program, etc.

● Not requiring the PIT token

4



Lessons Learned from ndn-lite
● Keep it simple

○ Too much overhead from an elegant design leads to decreased performance

● The environment should determine the architecture
○ Don’t try to force a single forwarder architecture for every environment
○ E.g., use NDN-DPDK for network backbones, ndn-lite for IoT, and YaNFD for desktop/server

● No Nacks
○ The lack of Nacks has significantly reduced the complexity of the forwarding pipeline and 

consumer APIs

5



Design Decisions for YaNFD
● Multi-threaded forwarder

○ Multiple forwarding threads, thread for each face, management thread, RIB thread(?)

● Modularity
○ LinkService does not need modularity, since features can be enabled/disabled independently

■ Include in base Face class, like NDN-DPDK
○ Modularity for transport types, strategies, caching algorithms, data structures(?)

● Data structures
○ Readers-writer locking for most data structures
○ However, shard PIT by thread (like NDN-DPDK)

■ Packets sent to forwarding thread based upon hash
■ PIT token does not need to be mandatory
■ Hash name to determine FW thread (if no token, hash k prefixes to send Data to k 

threads)

6



Design Decisions for YaNFD
● Modular data structures

○ For research and experimentation, use defined API for data structures (e.g., PIT, CS, FIB)
○ Allows implementations of data structures to be swapped in and out

■ Evaluate/use different lookup algorithms
○ → Ease forwarding efficiency research

● Provide better way to include strategies
○ See NDN-DPDK discussion
○ Shouldn’t require additions to forwarder codebase to use new strategies

7



The Plan from Here
● We have some major design decisions nailed down
● The next step is a more specific design (e.g., UML)
● Then, implementation and evaluation!

○ We have chosen to use Go for our implementation
○ Go is cross-platform and proven for use with NDN via NDN-DPDK

● Timeline:
○ Make significant progress on implementation by end of 2020
○ Finish basic implementation by March 2021
○ Finish evaluations and experimentation by May 2021 to catch Eric’s WQE deadline

8


